Перехід від низових до верхових лісових пожеж: вплив вмісту вологи

  • Том 60 , сторінки 669–700, ( 2024 )

Анотація

Зі зміною клімату та дедалі сухішим кліматом проблема лісових пожеж стає дедалі актуальнішою, викликаючи зростаючий інтерес до вивчення лісових пожеж. Більшість поточних досліджень зосереджено на наземному паливі дикої природи з особливим акцентом на мертвому та зазвичай сухому паливі. Ці ідеї важко перенести на живе паливо, особливо на коронні пожежі. Властивості займистості мертвого та сухого лісового палива не мають великого значення для розуміння виникнення та поширення верхових пожеж. Отже, дослідження щодо властивостей горючості свіжої лісової рослинності дуже рідкісні. Це ж зауваження стосується і пожеж, що відбуваються в лісі, незважаючи на те, що лісові пожежі цього типу є руйнівними, їх важко придушити та зазвичай мають драматичні наслідки.

Метою цієї роботи є визначення того, як динаміка вологи живих зразків крони (кінцевих частин прикореневих гілок) двох видів хвойних, Abies alba та Picea abies , впливає на їх горючі властивості. Експерименти проводилися в адаптованому калориметрі втрати маси з тримачем зразка, виготовленим на замовлення, щоб імітувати сценарій ініціації верхових пожеж (інтерфейс пожежі від поверхні до корони). Випробування проводили при значеннях теплового потоку 50, 60 і 70 кВт/м 2 і при різних рівнях вологості. За всіх значень теплового потоку результати показують тенденцію до зростання максимальної швидкості виділення тепла при зниженні вмісту вологи.

Зразки A. alba досягають вищих пікових показників вивільнення порівняно зі зразками P. abies . При теплових потоках 50 кВт/м 2 і 60 кВт/м 2 свіжі зразки A. alba займають більше часу, ніж зразки P. abies . При тепловому потоці 70 кВт/м 2 для набору досліджуваної вологості інтервал часу займання для зразків A. alba менший, ніж для зразків P. abies . Результати аналізу головних компонентів (PCA) показують, що такі змінні, як час до займання (TTI), пікова швидкість виділення тепла (PHRR) і середня швидкість виділення тепла (середня HRR) найкраще описують здатність до займання проаналізованих зразків хвойних дерев.

 Це попередній перегляд вмісту підписки, увійдіть через установу, щоб перевірити доступ. 

Список літератури

  1. Welcome to the Nation’s Logistical Support Center | National Interagency Fire Center. https://www.nifc.gov/ (Accessed 14 May 2022)
  2. Largest wildfires of the decade—BatchGeo Blog. https://blog.batchgeo.com/largest-wildfires/ (Accessed 14 May 2022)
  3. Yao JQ, Zhai HR, Tang XM, Gao XM, Yang XD (2020) Amazon fire monitoring and analysis based on multi-source remote sensing data. IOP Conf Ser. https://doi.org/10.1088/1755-1315/474/4/042025Article Google Scholar 
  4. Lagouvardos K, Kotroni V, Giannaros TM, Dafis S (2019) Meteorological conditions conducive to the rapid spread of the deadly wildfire in Eastern Attica, Greece. Bull Am Meteorol Soc 100(11):2137–2145. https://doi.org/10.1175/BAMS-D-18-0231.1Article Google Scholar 
  5. Ganteaume A, Jappiot M, Lampin C, Guijarro M, Hernando C (2013) Flammability of some ornamental species in wildland-urban interfaces in southeastern France: laboratory assessment at particle level. Environ Manage 52(2):467–480. https://doi.org/10.1007/s00267-013-0067-zArticle Google Scholar 
  6. Simpson KJ et al (2016) Determinants of flammability in savanna grass species. J Ecol 104(1):138–148. https://doi.org/10.1111/1365-2745.12503Article Google Scholar 
  7. White RH, Zipperer WC (2010) Testing and classification of individual plants for fire behaviour: plant selection for the wildlandurban interface. Int J Wildl Fire 19(2):213–227. https://doi.org/10.1071/WF07128Article Google Scholar 
  8. Ormeño E et al (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manage 257(2):471–482. https://doi.org/10.1016/j.foreco.2008.09.019Article Google Scholar 
  9. Della Rocca G, Madrigal J, Marchi E, Michelozzi M, Moya B, Danti R (2017) Relevance of terpenoids on flammability of Mediterranean species: an experimental approach at a low radiant heat flux. IForest 10(5):766–775. https://doi.org/10.3832/ifor2327-010Article Google Scholar 
  10. Morgan Varner J, Kane JM, Kreye JK, Engber E (2015) The flammability of forest and woodland litter: a synthesis. Curr For Rep 1(2):91–99. https://doi.org/10.1007/s40725-015-0012-xArticle Google Scholar 
  11. Badmaev N, Bazarov A (2020) Correlation analysis of terrestrial and satellite meteodata in the territory of the Republic of Buryatia (Eastern Siberia, Russian Federation) with forest fire statistics. Agric For Meteorol 297:108245. https://doi.org/10.1016/j.agrformet.2020.108245Article Google Scholar 
  12. Pachauri R, Meyer L (2014) Climate change 2014—synthesis report. Accessed 01 Mar 2021. http://ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf
  13. Khabarov N et al (2016) Forest fires and adaptation options in Europe. Reg Environ Chang 16(1):21–30. https://doi.org/10.1007/s10113-014-0621-0Article Google Scholar 
  14. Matthews S (2014) Dead fuel moisture research: 1991–2012. Int J Wildl Fire 23(1):78–92. https://doi.org/10.1071/WF13005Article Google Scholar 
  15. Fernandes PM, Botelho HS, Rego FC, Loureiro C (2009) Empirical modelling of surface fire behaviour in maritime pine stands. Int J Wildl Fire 18(6):698. https://doi.org/10.1071/WF08023Article Google Scholar 
  16. Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of Mediterranean forest fuels. Fire Technol 37(2):143–152. https://doi.org/10.1023/A:1011641601076Article Google Scholar 
  17. Pyne Stephen J, Andrews PL, Laven RD (1996) Introduction to wildland fire. Wiley, New YorkGoogle Scholar 
  18. Verbesselt J, Fleck S, Coppin P (2002) Estimation of fuel moisture content towards fire risk assessment: a review. In: Viegas DX (ed) Forest fire research & wildland fire safety. Millpress, Rotterdam, pp 1–11Google Scholar 
  19. Finney MA, Cohen JD, McAllister SS, Jolly WM (2013) On the need for a theory of wildland fire spread. Int J Wildl Fire 22(1):25–36. https://doi.org/10.1071/WF11117Article Google Scholar 
  20. Xanthopoulos G, Athanasiou M (2020) Crown fire. Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Springer, Cham, pp 1–15Google Scholar 
  21. Moreira F, Arianoutsou M, Corona P, las Heras JD (2012) Post-fire management and restoration of Southern European forests, vol 24. Springer, DordrechtGoogle Scholar 
  22. Rodríguez y Silva F et al (2017) Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments. For Syst 26(2):1–14. https://doi.org/10.5424/fs/2017262-10652Article Google Scholar 
  23. Cruz MG (1999) Modeling the initiation and spread of crown fires. Dissertation, University of Montana
  24. Molchanov V (1957) Conditions for the spread of crown fire in pine forest. Lesn Khozydystvo 10:50–63Google Scholar 
  25. Van Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7(1):23–34. https://doi.org/10.1139/X77-004Article Google Scholar 
  26. Van Wagner CE (1993) Prediction of crown fire behavior in two stands of jack pine. Can J For Res 23(3):442–449. https://doi.org/10.1139/x93-062Article Google Scholar 
  27. Keane Robert E (2015) Wildland fuel fundamentals and applications. Springer, ChamBook Google Scholar 
  28. Ferguson SC, Dahale A, Shotorban B, Mahalingam S, Weise DR (2013) The role of moisture on combustion of pyrolysis gases in wildland fires. Combust Sci Technol 185(3):435–453. https://doi.org/10.1080/00102202.2012.726666Article Google Scholar 
  29. Weise DR et al (2018) Fire behavior in chaparral–evaluating flame models with laboratory data. Combust Flame 191:500–512. https://doi.org/10.1016/j.combustflame.2018.02.012Article Google Scholar 
  30. Xanthopoulos G, Wakimoto RH (1993) A time to ignition–temperature–moisture relationship for branches of three western conifers. Can J For Res 23(2):253–258. https://doi.org/10.1139/X93-034Article Google Scholar 
  31. Cruz MG, Alexander ME, Wakimoto RH (2003) Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int J Wildl Fire 12(1):39–50. https://doi.org/10.1071/WF02024Article Google Scholar 
  32. Cruz MG, Alexander ME, Wakimoto RH (2004) Modeling the likelihood of crown fire occurrence in conifer forest stands. For Sci 50(5):640–658Google Scholar 
  33. Cruz MG, Alexander ME, Wakimoto RH (2003) Assessing the probability of crown fire initiation based on fire danger indices. For Chron 79(5):976–983. https://doi.org/10.5558/tfc79976-5Article Google Scholar 
  34. Cruz MG, Alexander ME, Wakimoto RH (2005) Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can J For Res 35(7):1626–1639. https://doi.org/10.1139/x05-085Article Google Scholar 
  35. Alexander ME, Cruz MG (2012) Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. Int J Wildl Fire 21(2):95–113. https://doi.org/10.1071/WF11001Article Google Scholar 
  36. Cruz MG, Alexander ME (2010) Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. Int J Wildl Fire 19(4):377–398. https://doi.org/10.1071/WF08132Article MathSciNet Google Scholar 
  37. Cruz MG, Alexander ME, Wakimoto RH (2002) Predicting crown fire behavior to support forest fire management decision-making. For Fire Res Wildl Fire Saf [Online]. http://nofc.cfs.nrcan.gc.ca/bookstore_pdfs/21122.pdf
  38. Cruz M, Alexander M, Wakimoto RH (2003) Definition of a fire behavior model evaluation protocol: a case study application to crown fire behavior models. Fire Fuel Treat Ecol Restor [Online]. http://www.cnr.uidaho.edu/for433/secure/lessons/lesson02/cruzetal_2003_RMRS_proc.pdf
  39. Alexander ME, Cruz MG (2011) Crown fire dynamics in conifer forests. In: Synthesis of knowledge of extreme fire behavior: volume I for fire managers. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, pp 107–144
  40. Cruz MG, Butler BW, Alexander ME, Viegas DX (2006) Development and evaluation of a semi-physical crown fire initiation model. V International conference on forest fire research. https://doi.org/10.1016/j.foreco.2006.08.132Article Google Scholar 
  41. Byram GM (1959) Combustion of forest fuels. Forest fire: control and use. McGraw-Hill Book Company Inc, New York, pp 61–89Google Scholar 
  42. Morandini F, Perez-Ramirez Y, Tihay V, Santoni PA, Barboni T (2013) Radiant, convective and heat release characterization of vegetation fire. Int J Therm Sci 70:83–91. https://doi.org/10.1016/j.ijthermalsci.2013.03.011Article Google Scholar 
  43. Sullivan EA, Mcdonald AG (2014) Mathematical model and sensor development for measuring energy transfer from wildland fires. Int J Wildl Fire 23(7):995–1004. https://doi.org/10.1071/WF14016Article Google Scholar 
  44. Scott JH, Reinhardt ED (2005) Stereo photo guide for estimating canopy fuel characteristics in conifer stands. USDA For Serv 145:1–51Google Scholar 
  45. Weise DR, Zhou X, Sun L, Mahalingam S (2005) Fire spread in chaparral—‘Go or no-go?’ Int J Wildl Fire 14(1):99–106. https://doi.org/10.1071/WF04049Article Google Scholar 
  46. Cobian-Iñiguez J, Aminfar AH, Saha S, Awayan K, Weise DR, Princevac M (2022) The transition and spread of a chaparral crown fire: insights from laboratory scale wind tunnel experiments. J Combust 2022:1–13. https://doi.org/10.1155/2022/5630594Article Google Scholar 
  47. Weise DR, Koo E, Zhou X, Mahalingam S, Morandini F, Balbi JH (2016) Fire spread in chaparral—a comparison of laboratory data and model predictions in burning live fuels. Int J Wildl Fire 25(9):980–994. https://doi.org/10.1071/WF15177Article Google Scholar 
  48. Sanpakit C, Omodan S, Weise D, Princevac M (2015) Laboratory fire behavior measurements of chaparral crown fire. Univ Calif Riverside Undergrad Res J 9:123–129Google Scholar 
  49. Weise DR, Cobian-Iñiguez J, Princevac M (2018) Surface to crown transition. Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Springer, Cham, pp 988–992Google Scholar 
  50. Leonelli L, Barboni T, Santoni PA, Quilichini Y, Coppalle A (2017) Characterization of aerosols emissions from the combustion of dead shrub twigs and leaves using a cone calorimeter. Fire Saf J 91:800–810. https://doi.org/10.1016/j.firesaf.2017.03.048Article Google Scholar 
  51. Ganteaume A, Jappiot M, Curt T, Lampin C, Borgniet L (2014) Flammability of litter sampled according to two different methods: comparison of results in laboratory experiments. Int J Wildl Fire 23(8):1061–1075. https://doi.org/10.1071/WF13045Article Google Scholar 
  52. Alam MA et al (2020) Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. J Ecol 108(2):641–653. https://doi.org/10.1111/1365-2745.13289Article Google Scholar 
  53. Simeoni A et al (2012) Flammability studies for wildland and wildland-urban interface fires applied to pine needles and solid polymers. Fire Saf J 54:203–217. https://doi.org/10.1016/j.firesaf.2012.08.005Article Google Scholar 
  54. Fateh T, Richard F, Batiot B, Rogaume T, Luche J, Zaida J (2016) Characterization of the burning behavior and gaseous emissions of pine needles in a cone calorimeter—FTIR apparatus. Fire Saf J 82:91–100. https://doi.org/10.1016/j.firesaf.2016.03.008Article Google Scholar 
  55. Romero B, Ganteaume A (2021) Effect of fire frequency on the flammability of two Mediterranean pines: link with needle terpene content. Plants 10(10):1–23. https://doi.org/10.3390/plants10102164Article Google Scholar 
  56. Jaureguiberry P, Bertone G, Díaz S (2011) Device for the standard measurement of shoot flammability in the field. Austral Ecol 36(7):821–829. https://doi.org/10.1111/j.1442-9993.2010.02222.xArticle Google Scholar 
  57. Gigović L, Pourghasemi HR, Drobnjak S, Bai S (2019) Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests 10(5):408. https://doi.org/10.3390/F10050408Article Google Scholar 
  58. Marković T, Radanović D, Nastasijević B, Antić-Mladenović S, Vasić V, Matković A (2019) Yield, quality and safety of yellow gentian roots produced under dry-farming conditions in various single basal fertilization and planting density models. Ind Crops Prod 132:236–244. https://doi.org/10.1016/j.indcrop.2019.02.027Article Google Scholar 
  59. Lode project—Loss data enhancement for DDR & CCA management. https://www.lodeproject.polimi.it/ (Accessed 08 Dec 2020)
  60. Bartoli P, Simeoni A, Biteau H, Torero JL, Santoni PA (2011) Determination of the main parameters influencing forest fuel combustion dynamics. Fire Saf J 46(1–2):27–33. https://doi.org/10.1016/j.firesaf.2010.05.002Article Google Scholar 
  61. Schemel CF, Simeoni A, Biteau H, Rivera JD, Torero JL (2008) A calorimetric study of wildland fuels. Exp Therm Fluid Sci 32(7):1381–1389. https://doi.org/10.1016/j.expthermflusci.2007.11.011Article Google Scholar 
  62. Jervis FX, Rein G (2016) Experimental study on the burning behaviour of Pinus halepensis needles using small-scale fire calorimetry of live, aged and dead samples. Fire Mater 40(3):385–395. https://doi.org/10.1002/fam.2293Article Google Scholar 
  63. Santoni PA, Romagnoli E, Chiaramonti N, Barboni T (2015) Scale effects on the heat release rate, smoke production rate, and species yields for a vegetation bed. J Fire Sci 33(4):290–319. https://doi.org/10.1177/0734904115591176Article Google Scholar 
  64. Simeoni A (2013) Experimental understanding of wildland fires. Fire phenomena and the earth system. Wiley, Hoboken, pp 35–52Chapter Google Scholar 
  65. Finney MA, Cohen ABJD, Mcallister SS, Matt W (2013) On the need for a theory of wildland fire spread. Int J Wildland Fire. https://doi.org/10.1071/WF11117Article Google Scholar 
  66. ISO (2015) 5660-1. Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement)
  67. Babrauskas V (1984) Development of the cone calorimeter—a bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater 8(2):81–95. https://doi.org/10.1002/fam.810080206Article Google Scholar 
  68. McDaniel JK, Alexander HD, Siegert CM, Lashley MA (2020) Shifting tree species composition of upland oak forests alters leaf litter structure, moisture, and flammability. For Ecol Manage 482:118860. https://doi.org/10.1016/j.foreco.2020.118860Article Google Scholar 
  69. Werth PA et al (2011) Synthesis of knowledge of extreme fire behavior: volume I for fire managers. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland
  70. Molchanov V (1957) Conditions for the spread of crown fires in pine forests. Lesn Khoziaistvo 10(8):50–53Google Scholar 
  71. Keane RE (2019) Canopy fuel. In: Manzello SL (ed) Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Springer, Cham, pp 1–12Google Scholar 
  72. Safdari MS, Amini E, Weise DR, Fletcher TH (2019) Comparison of pyrolysis of live wildland fuels heated by radiation vs convection. Fuel 268:117342. https://doi.org/10.1016/j.fuel.2020.117342Article Google Scholar 
  73. Safdari MS (2018) Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native. Dissertation, Brigham Young University
  74. Safdari MS et al (2018) Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the Southern United States. Fuel 229:151–166. https://doi.org/10.1016/j.fuel.2018.04.166Article Google Scholar 
  75. Butler BW et al (2004) Measurements of radiant emissive power and temperatures in crown fires. Can J For Res 34(8):1577–1587. https://doi.org/10.1139/X04-060Article Google Scholar 
  76. Silvani X, Morandini F, Muzy J-F (2009) Wildfire spread experiments: fluctuations in thermal measurements. Int Commun Heat Mass Transf 36(9):887–892. https://doi.org/10.1016/j.icheatmasstransfer.2009.06.008Article Google Scholar 
  77. McAllister S, Grenfell I, Hadlow A, Jolly WM, Finney M, Cohen J (2012) Piloted ignition of live forest fuels. Fire Saf J 51:133–142. https://doi.org/10.1016/j.firesaf.2012.04.001Article Google Scholar 
  78. Lamorlette A, El Houssami M, Morvan D (2018) An improved non-equilibrium model for the ignition of living fuel. Int J Wildl Fire 27(1):29–41. https://doi.org/10.1071/WF17020Article Google Scholar 
  79. Weise DR, White RH, Beall FC, Etlinger M (2005) Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. Int J Wildl Fire 14(3):321–338. https://doi.org/10.1071/WF04035Article Google Scholar 
  80. Blank RR, White RH, Ziska LH (2006) Combustion properties of Bromus tectorum L.: influence of ecotype and growth under four CO2 concentrations. Int J Wildl Fire 15(2):227–236. https://doi.org/10.1071/WF05055Article Google Scholar 
  81. Dibble AC, White RH, Lebow PK (2007) Combustion characteristics of north-eastern USA vegetation tested in the cone calorimeter: invasive versus non-invasive plants. Int J Wildl Fire 16(4):426–443. https://doi.org/10.1071/WF05103Article Google Scholar 
  82. Madrigal J, Hernando C, Guijarro M, DÃez C, Marino E, De Castro AJ (2009) Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device. J Fire Sci 27(4):323–342. https://doi.org/10.1177/0734904109102030Article Google Scholar 
  83. Ramadhan ML, Zarate S, Carrascal J, Osorio AF, Hidalgo JP (2021) Effect of fuel bed size and moisture on the flammability of Eucalyptus saligna leaves in cone calorimeter testing. Fire Saf J 120:103016. https://doi.org/10.1016/j.firesaf.2020.103016Article Google Scholar 
  84. Romero B, Fernandez C, Lecareux C, Ormeño E, Ganteaume A (2019) How terpene content affects fuel flammability of wildland–urban interface vegetation. Int J Wildl Fire 28(8):614–627. https://doi.org/10.1071/WF18210Article Google Scholar 
  85. Ormeño E et al (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manage 257(2):471–482. https://doi.org/10.1016/j.foreco.2008.09.019Article Google Scholar 
  86. Pausas JG, Alessio GA, Moreira B, Segarra-Moragues JG (2016) Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 180(1):103–110. https://doi.org/10.1007/s00442-015-3454-8Article Google Scholar 
  87. Zamponi L, Michelozzi M, Capretti P (2007) Terpene response of Picea abies and Abies alba to infection with Heterobasidion s.l. For Pathol 37(4):243–250. https://doi.org/10.1111/j.1439-0329.2007.00493.xArticle Google Scholar 
  88. Madrigal J, Guijarro M, Hernando C, Díez C, Marino E (2011) Effective heat of combustion for flaming combustion of mediterranean forest fuels. Fire Technol 47(2):461–474. https://doi.org/10.1007/s10694-010-0165-xArticle Google Scholar 
  89. Madrigal J, Hernando C, Guijarro M (2013) A new bench-scale methodology for evaluating the flammability of live forest fuels. J Fire Sci 31(2):131–142. https://doi.org/10.1177/0734904112458244Article Google Scholar 
  90. Etlinger MG, Beall FC (2004) Development of a laboratory protocol for fire performance of landscape plants. Int J Wildl Fire 13(4):479–488. https://doi.org/10.1071/WF04039Article Google Scholar 
  91. El Houssami M et al (2016) Experimental and numerical studies characterizing the burning dynamics of wildland fuels. Combust Flame 168:113–126. https://doi.org/10.1016/j.combustflame.2016.04.004Article Google Scholar 
  92. Yashwanth BL, Shotorban B, Mahalingam S, Lautenberger CW, Weise DR (2016) A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combust Flame 163:301–316. https://doi.org/10.1016/j.combustflame.2015.10.006Article Google Scholar 
  93. Dahale A, Ferguson S, Shotorban B, Mahalingam S (2013) Effects of distribution of bulk density and moisture content on shrub fires. Int J Wildl Fire 22(5):625–641. https://doi.org/10.1071/WF12040Article Google Scholar 
  94. Pickett BM, Isackson C, Wunder R, Fletcher TH, Butler BW, Weise DR (2010) Experimental measurements during combustion of moist individual foliage samples. Int J Wildl Fire 19(2):153–162. https://doi.org/10.1071/WF07121Article Google Scholar 
  95. McAllister S, Weise DR (2017) Effects of season on ignition of live wildland fuels using the forced ignition and flame spread test apparatus. Combust Sci Technol 189(2):231–247. https://doi.org/10.1080/00102202.2016.1206086Article Google Scholar 
  96. Babrauskas V (2006) Effective heat of combustion for flaming combustion of conifers. Can J For Res 36(3):659–663. https://doi.org/10.1139/x05-253Article Google Scholar 
  97. Possell M, Bell TL (2013) The influence of fuel moisture content on the combustion of Eucalyptus foliage. Int J Wildl Fire 22(3):343–352. https://doi.org/10.1071/WF12077Article Google Scholar 
  98. White RH, Weise DR, Frommer S (1996) Preliminary evaluation of the flammability of native and ornamental plants with the cone calorimeter. In: Proceedings of the international conference on fire safety, pp. 256–265
  99. Matt FJ, Dietenberger MA, Weise DR (2020) Summative and ultimate analysis of live leaves from Southern U.S. forest plants for use in fire modeling. Energy Fuels 34(4):4703–4720. https://doi.org/10.1021/acs.energyfuels.9b04107Article Google Scholar 
  100. Jolly WM et al (2012) Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. For Ecol Manage 269:52–59. https://doi.org/10.1016/j.foreco.2011.12.022Article Google Scholar 
  101. Boardman CR, Dietenberger MA, Weise DR (2021) Specific heat capacity of wildland foliar fuels to 434°C. Fuel 292:120396. https://doi.org/10.1016/j.fuel.2021.120396Article Google Scholar 
  102. McAllister S, Weise DR (2017) Effects of season on ignition of live wildland fuels using the forced ignition and flame spread test apparatus. Combust Sci Technol 189(2):231–247. https://doi.org/10.1080/00102202.2016.1206086Article Google Scholar 

Download references

figure 9
Figure 9
figure 10
Figure 10

https://link.springer.com/article/10.1007/s10694-023-01525-1

Loading